Effects of Impermeable Boundaries on Gas Production from Hydrate Accumulations in the Shenhu Area of the South China Sea

نویسندگان

  • Gang Li
  • Keni Zhang
  • Bo Li
  • Yu Zhang
چکیده

Based on currently available data from site measurements and the preliminary estimates of the gas production potential from the hydrate accumulations at the SH7 site in the Shenhu Area using the depressurization method with a single horizontal well placed in the middle of the Hydrate-Bearing Layer (HBL), the dependence of production performance on the permeabilities of the overburden (OB) and underburden (UB) layers was investigated in this modeling study. The simulation results indicated that the temperature and the pressure of the HBL were affected by the permeabilities of OB and UB and the effect of depressurization with impermeable OB and UB was significantly stronger than that with permeable boundaries. Considering the percentage of hydrate dissociation, the gas production rate and the gas-to-water ratio, the hydrate deposit with impermeable OB and UB was expected to be the potential gas production target.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Gas Production from Marine Hydrate Deposits at the GMGS2-Site 8, Pearl River Mouth Basin, South China Sea

Natural gas hydrate accumulations were confirmed in the Dongsha Area of the South China Sea by the Guangzhou Marine Geological Survey 2 (GMGS2) scientific drilling expedition in 2013. The drilling sites of GMGS2-01, -04, -05, -07, -08, -09, -11, -12, and -16 verified the existence of a hydrate-bearing layer. In this work gas production behavior was evaluated at GMGS2-8 by numerical simulation. ...

متن کامل

Acoustic Velocity Log Numerical Simulation and Saturation Estimation of Gas Hydrate Reservoir in Shenhu Area, South China Sea

Gas hydrate model and free gas model are established, and two-phase theory (TPT) for numerical simulation of elastic wave velocity is adopted to investigate the unconsolidated deep-water sedimentary strata in Shenhu area, South China Sea. The relationships between compression wave (P wave) velocity and gas hydrate saturation, free gas saturation, and sediment porosity at site SH2 are studied, r...

متن کامل

Experimental Study on Methane Hydrate Dissociation by Depressurization in Porous Sediments

Based on currently available data from site measurements in the Shenhu Area of the South China Sea, methane hydrate dissociation behavior by depressurization is studied in a one-dimensional experimental apparatus. According to time variation of temperature, resistance and gas production, the hydrate dissociation process is divided into three stages: free gas release, rapid dissociation and grad...

متن کامل

Evolution of Hydrate Dissociation by Warm Brine Stimulation Combined Depressurization in the South China Sea

To evaluate the gas production performance of the hydrate accumulations in the South China Sea, a numerical simulation with warm brine stimulation combined depressurization has been conducted. A dual horizontal well system is considered as the well configuration in this work. In order to reduce energy input and improve energy utilization, warm brine (<30 °C) instead of hot brine (>50 °C) is inj...

متن کامل

Determination of Time of Oil Cracking into Gas in Weiyuan Paleo-Oil Pool in Sichuan Basin, South China

Weiyuan gas field, located in the Sichuan basin of south China, is a large marine gas field with the oldest reservoir (the Sinian sequences) in south China. The hydrocarbon origin of the gas field has long been debated by petroleum geologists. Recently, it was recognized that a paleo-oil pool maybe the significant contributor to the gas field. Consequently, when the paleo-oil pool had been crac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013